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The Bilbao Crystallographic Server is a web site with crystallographic databases and programs available online 
(www.cryst.ehu.es). It has been operating for more than ten years and new applications are being added regularly. 
The programs available on the server do not need a local installation and can be used free of charge. The server 
gives access to general information related to crystallographic symmetry groups (generators, general and special 
positions, maximal subgroups, Brillouin zones, etc.). Apart from the simple tools for retrieving the stored data, there 
are programs for the analysis of group-subgroup relations between space groups. There are also software package 
studying specific problems of solid-state physics, structural chemistry and crystallography.
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1. INTRODUCTION

The Bilbao Crystallographic Server is a web 
site with crystallographic databases and programs 
available online. The server has been operating 
since 1998, and new programs and applications 
are being added regularly [23, 2, 3]. The programs 
available on the server do not need a local instal-
lation and can be used free of charge. The only 
requirement is an Internet connection and a web 
browser. The Bilbao Crystallographic Server is 
accessible at www.cryst.ehu.es.

The server is built on a database core, and con-
tains different shells. The set of databases includes 
data from International Tables for Crystallography, 
Vol. A: Space-group symmetry (hereafter referred 
to as ITA)[12], and the data on maximal subgroups 
of space groups as listed in Part 1 of International 
Tables for Crystallography, Vol. A1: Symmetry 
relations between space groups (hereafter referred 
to as ITA1)[13]. There is an access to the crystal-
lographic data for the subperiodic layer and rod 
groups (International Tables for Crystallography, 
Vol. E: Subperiodic groups [14]) and their maximal 
subgroups. A database on incommensurate struc-
tures incorporating modulated structures and com-
posites, and a k-vector database with Brillouin-zone 
figures and classification tables of the wave vectors 
for all space groups are also available.

The innermost shell is formed by simple re-
trieval tools which serve as an interface to the da-
tabases. They allow the access to the information 
on space groups or subperiodic groups in different 
types of formats: HTML, text ASCII or XML. The 
second shell contains applications which are essen-
tial for problems involving group-subgroup related 
space groups G > H (supergroups of space groups, 
chains of maximal subgroups relating G and H, 
splittings of Wyckoff positions for group-subgroup 
pairs). Then, follows a shell with programs on rep-
resentations of point and space groups including the 
computation of spacegroup representations, their 
correlations for G > H, etc. Parallel to the crystal-
lographic software a shell with programs facilitat-
ing the study of specific problems related to solid-
state physics, structural chemistry and crystallog-
raphy is also developed. For example, the program 
PSEUDO provides an online tool for systematic 
pseudosymmetry search based on group-subgroup 
relations between space groups. The detection of 
pseudosymmetry can be very useful in predicting 
phase transitions, including the identification of 
ferroic materials or the detection of false symme-
try assignments in crystal structure determination 
[11, 21, 22]. The performance and efficiency of the 
program has been greatly improved by including a 
powerful cross-check of Wyckoff compatibility re-
lations of the possible high-symmetry structures [9]. 
The automatic symmetry-mode analysis done by 
AMPLIMODES can be very useful for establishing 
the driving mechanisms of structural phase transi-
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tions or the fundamental instabilities at the origin of 
the distorted phases [25, 26]. Given the high- and 
the low-symmetry structure the program determines 
the atomic displacements that relate them, defines 
a basis of symmetry-adapted modes, and calculates 
the amplitudes and polarization vectors of the dis-
tortion modes of different symmetry frozen in the 
structure. In that shell one can also find a computer 
program that calculates the phonon extinction rules 
for inelastic neutron scattering experiments. Given 
the space group and the phonon symmetry speci-
fied by the wave vector, NEUTRON [17] examines 
the inelastic neutron scattering activity of the cor-
responding phonons for all possible types of scatter-
ing vectors. The systematic selection rules are also 
useful in the interpretation of the results of thermal 
diffuse scattering. 

The aim of the present contribution is to report 
on the different databases and basic programs of the 
server related to the crystallographic groups, their 
group-subgroup relations and representations. Part 
of these databases and programs have been already 
described in [2, 3], and here we follow closely 
these presentations. They are completed by the 
description of the new developments until 2010. 
The presentation of the relevant databases and 
retrieval tools that access the stored crystallographic 
symmetry information is given in Section 2. The 
discussion of the accompanying applications related 
to group-subgroup and group-supergroup relations 
between space groups can be found in Section 3. 
The Section 4 introduces the basic programs for 
representations of crystallographic groups available 
on the Bilbao Crystallographic Server.

2. SPACE-GROUPS DATABASES  
AND RETRIEVAL TOOLS

The databases form the core of the Bilbao 
Crystallographic Server and the stored information 
is used by all computer programs available on the 
server. The space-group database includes infor-
mation on the following symmetry items: genera-
tors and representatives of the general position of 
each space group specified by its ITA number and 
Hermann-Mauguin symbol; special Wyckoff posi-
tions including the Wyckoff letter, Wyckoff multi-
plicity, the site-symmetry group and the set of co-
set representatives, as given in ITA; the Reflection 
conditions including the general and special condi-
tions. The programs and databases of the Bilbao 
Crystallographic Server use specific settings of 
space groups (hereafter referred to as standard or 
default settings) that coincide with the conventional 
space-group descriptions found in ITA. For space 

groups with more than one description in ITA, the 
following settings are chosen as standard: unique 
axis b setting, cell choice 1 for monoclinic groups, 
hexagonal axes setting for rhombohedral groups, 
and origin choice 2 (origin in 1 ) for the centrosym-
metric groups listed with respect to two origins in 
ITA. The data from the databases can be accessed 
using the simple retrieval tools that use as input the 
number of the space group (ITA numbers). There 
is also a possibility to select the group from a table 
with ITA numbers and Hermann-Mauguin symbols. 
The output of the program GENPOS contains the 
list with the generators or the general positions and 
provides the possibility to obtain the same data in 
different settings either by specifying the transfor-
mation matrix to the new basis or selecting one of 
the 530 settings listed in Table 4.3.2.1 of ITA. The 
list with the Wyckoff positions for a given space 
group in different settings can be obtained using the 
program WYCKPOS. The Wyckoff-position repre-
sentatives for the non-standard settings of the space 
groups are specified by the transformed coordinates 
of the representatives of the corresponding default 
settings. The program NORMALIZER gives access 
to the data on the Euclidean and affine normalizers 
of space groups (cf. Part 15 of ITA) specified by 
a set of coset representatives of their decomposi-
tion with respect to the space groups. The assign-
ments of the Wyckoff positions to Wyckoff sets are 
retrieved by the program WYCKSETS (cf. Table 
14.2.3.2 of ITA).

2.1. Database on maximal subgroups

All maximal non-isomorphic subgroups and 
maximal isomorphic subgroups of indices 2, 3 and 4 
of each space group can be retrieved from the data-
base using the program MAXSUB1. Each subgroup 
H is specified by its ITA number, the index in the 
group G and the transformation matrix-column pair 
(P, p) that relates the default bases a′, b′, c′ of H and 
a, b, c of G:

 (a′, b′, c′) = (a, b, c) P (2.1.1)

The column p = (p1, p2, p3) of coordinates of 
the origin OH of H is referred to the coordinate 
system of G.

The different maximal subgroups are distributed 
in classes of conjugate subgroups. For certain appli-
cations it is necessary to represent the subgroups H 
as subsets of the elements of G.This is achieved by 
an option in MAXSUB which transforms the gener-
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1 A subgroup H < G is maximal if no subgroup Z exists for 
which H < Z < G holds.
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al-position representatives of H by the correspond-
ing matrix-column pair (P, p)−1 to the coordinate 
system of G. A link provides the splittings of all 
Wyckoff positions of G with respect to those of H.

Maximal subgroups of index higher than 
4 have indices p, p2 or p3, where p is a prime. 
They are isomorphic subgroups and are infinite 
in number. In ITA1 the isomorphic subgroups are 
listed not individually but as members of series 
under the heading ‘Series of maximal isomorphic 
subgroups’. The program SERIES provides the 
access to the database of maximal isomorphic 
subgroups of the Bilbao Crystallographic Server. 
Apart from the parametric ITA1 descriptions of 
the series, its output provides the individual list-
ings of all maximal isomorphic subgroups of in-
dices as high as 27 for all space groups except for 
the cubic ones where the index is 125. The format 
and content of the subgroup data are similar to 
those of MAXSUB access tool. In addition, there 
is a special tool (under ‘define a maximal index’ 
on the SERIES web form) that permits the online 
generation of maximal isomorphic subgroups of 
any index up to 131 for all space groups. (Note 
that these data are only online generated and do 
not form part of the (static) database on isomor-
phic subgroups.)

2.2. Subperiodic groups

Recently, we have started with the development of 
a database for the subperiodic groups with symmetry 
information as listed in International Tables for 
Crystallography Vol. E: Subperiodic Groups [14]. 
For the moment the Bilbao Crystallographic Server 
provides a free online access to a database for the 
layer and rod groups including generators, general 
and special positions. The structure of this database 
and the retrieval programs are similar to the ITA 
database. In addition, the complete information 
on maximal subgroups of layer groups [5] and 
rod groups is made available: Similar to the ITA1 
database, all maximal non-isotypic subgroups as 
well as maximal isotypic subgroups of index 2, 3 and 
4 are listed individually. The conjugacy relations of 
the subgroups in the original group are indicated. 
The transformation to the conventional coordinate 
system of the subgroup is available as a 3×3 matrix 
for the change of basis and a column for the origin 
shift. Each subgroup can be further specified by 
its general-position representatives referred to the 
basis of the group. The symmetry information has 
been stored in a provisional CIF-format. For the 
extension of the existing CIF-core dictionary a list 
of data names has been developed which refer to 
the specific requirements of the subgroup tables of 
the layer groups. 

2.3. Brillouin zones and wave-vectors 
classification

The determination, classification, labeling and 
tabulation of irreducible representations (irreps) 
of space groups is based on the use of wave vec-
tors k. The k-vector database available on the 
Bilbao Crystallographic Server contains figures 
of the Brillouin zones and tables which form the 
background of a classification of the irreps of all 
230 space groups. In this compilation the symme-
try properties of the wave vectors are described by 
the so-called reciprocal-space groups which are 
isomorphic to symmorphic space groups [27], see 
also [4]. This isomorphism allows the application of 
crystallographic conventions in the classification of 
the wave vectors (and henceforth in the irreps of the 
space groups). For example, the different symmetry 
types of k-vectors correspond to the different kinds 
of point orbits (Wyckoff positions) in the symmor-
phic space groups; the unit cells with the asymmet-
ric units given in ITA can serve as Brillouin zones 
and representation domains, etc. The advantages of 
the reciprocal-space group approach compared to 
the traditional schemes of wave-vector classifica-
tion can be summarized as follows:

The asymmetric units given in  • ITA serve as 
representation domains which are independent 
of the different shapes of the Brillouin zones for 
different ratios of the lattice parameters.

For the non-holohedral groups the represen- •
tation domain is obtained from that of the cor-
responding holohedral group by extending the 
parameter ranges, not by introducing differently 
labeled special wave vector points, lines or planes 
of symmetry.

A complete list of the special sites in the  •
Brillouin zone is provided by the Wyckoff positions 
of ITA. The site symmetry of ITA corresponds to 
the little co-group of the wave vector; the number of 
branches of the star of the wave vector follows from 
the multiplicity of the Wyckoff position.

All wave-vector stars giving rise to the same  •
type of irreps are related to the same Wyckoff posi-
tion and designated by the same Wyckoff letter.

The available figures and the wave-vector data 
based on the reciprocal-space group symmetry are 
compared with the representation domains and the 
k-vector tables of the widespread tables of space-
group representations by Cracknell, Davies, Miller 
and Love [10] (hereafter referred to as CDML). The 
retrieval tool KVEC of the k-vector database uses as 
input the ITA-number of the space group. The output 
contains wave-vector tables and figures. There are 
several sets of figures and tables for the same space 
group when its Brillouin-zone shape depends on 
the lattice parameters of the reciprocal lattice. The 

M. I. Aroyo et al.: Crystallography online: Bilbao Crystallographic Server



186

k-vector data are the same for space groups of the 
same arithmetic crystal class. 

In the tables, the k-vector data as listed by CDML 
are compared with the Wyckoff-position description 
as given in ITA. Each k-vector type is specified by 
its label and coordinates as listed in CDML. The cor-
responding Wyckoff positions are described by their 
Wyckoff letters, multiplicities, and site symmetry 
groups. Their parameter description contains also 
the parameter ranges chosen in such a way that each 
orbit of the Wyckoff position of ITA, i.e. also each 
k-orbit, is listed exactly once. No ranges for the pa-
rameters are listed in CDML. Symmetry points, lines 
of symmetry or planes of CDML which are related to 
the same Wyckoff position are grouped together. The 
wave-vector coordinates of CDML refer always to 
primitive basis irrespective whether the conventional 
description of the space group is with respect to a 
centred or primitive basis. For that reason, in the case 
of space groups with centred lattices the wave-vector 
coordinates with respect to a basis that is dual to the 
conventional basis in direct space are also included in 
the tables. (For space groups with primitive lattices, 
the wave-vector coordinates referred to a primitive 
basis coincide with those referred to the dual basis.) 

An additional tool allows the complete charac-
terization of any wave vector of the reciprocal space 
(not restricted to the first Brillouin zone): given the 
k-vector coordinates referred either to primitive 
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(CDML) or conventional dual basis, the program 
assigns the k-vector to the corresponding wave-
vector symmetry type, specifies its CDML label, 
calculates the little co-group and the arms of the k-
vector stars. In the figures, the Brillouin zones of 
CDML and the conventional unit cells of ITA are 
displayed. The asymmetric units play the role of the 
representation domains of the Brillouin zones and 
they are chosen often in analogy to those of ITA. 
The names of k-vector points, lines, and planes of 
CDML are retained in this listing. New names have 
been given only to points and lines which are not 
listed in CDML. 

Example: Brillouin zones and special k-vec-
tors of the arithmetic crystal class 4 2m I . The 
following example illustrates the relation between 
the traditional and the reciprocal-space group de-
scriptions of the wave-vector types of space-group 
irreps. The included figures and tables form part of 
the output of the access tool KVEC.

The are two space groups belonging to the arith-
metic crystal class 4 2m I : 9

24 2 (119)dI m D−  and 
10
24 2 (120)dI c D− . The k-vector types of that arith-

metic crystal class are described with respect to the 
corresponding reciprocal space group which is iso-
morphic to 42 (121)I m . Depending on the relations 
between the lattice constants a, b and c, there are 
two topologically different bodies of the Brillouin 

Fig. 1. Brillouin zone, asymmetric unit and representation domain of CDML for the arithmetic crystal class 4 2m I : c > a: 
space groups 9

24 2 (119)dI m D−  and 10
24 2 (120)dI m D− ; reciprocal-space group *42I m , No. 121: c* < a*. The representa-

tion domain of CDML is different from the asymmetric unit.
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zone displayed in Fig. 1 and Fig. 2 by thin black 
lines; the first one has 24 vertices, 48 lines and 14 
faces, the other has 18 vertices, 28 lines and 12 fac-
es. The shape of the unit cell of ITA is always a par-
allelepipedon with 8 vertices, 12 edges and 6 faces. 
Similarly, the representation domains of CDML are 
more complicated than the asymmetric units of ITA, 
see Fig. 1 and Fig. 2.

The representatives of the k-vectors symmetry 
points or of symmetry lines, as well as the edges 
of the representation domain of CDML and of the 
chosen asymmetric unit are brought out in colors. 
A k-vectors symmetry point is designated by a red 
or cyan if it belongs to the asymmetric unit or to the 
representation domain of CDML. Points listed by 
CDML are not colored if they are part of a symmetry 
line or symmetry plane only. The color of the line 
is pink for an edge of the asymmetric unit which 
is not a symmetry line and it is red for a symmetry 
line of the asymmetric unit. The color of the line 
is brown with the name in red for a line which is a 
symmetry line as well as an edge of the asymmetric 
unit. The edges of the representation domains of 
CDML (displayed in the same figure) are colored in 
light blue. The corresponding symmetry points and 
lines are colored cyan. Edges of the representation 
domain or common edges of the representation 
domain and the asymmetric unit are colored dark 
blue with the letters in cyan if they are symmetry 

lines of the representation domain but not of the 
asymmetric unit. To save space we have included 
only part of the list of k-vector relations for the 
arithmetic class 4 2m I  in the table shown in Fig. 3 (a 
screen-shot of the output of the access tool KVEC), 
corresponding to Fig. 1. The k-vector parameters of 
CDML (second column) of the table in Fig. 3 are 
different from those of ITA (last column) because 
in CDML the data are always referred to a primitive 
basis, whereas in ITA they are referred to a centered 
basis. The parameter ranges (last column) are 
chosen such that each k-vector orbit is represented 
exactly once.

One takes from the table given in Fig. 3 that dif-
ferent k labels of CDML (first column) may cor-
respond to the same Wyckoff position may belong 
to the same type of k vectors, i. e. may belong to 
the same type of k and they give rise to the same 
type of irreps. Due to the special shape of the rep-
resentation domain of CDML the special wave-
vector line corresponding to the Wyckoff position 
8 i (..m) (fourth column) is split into two parts, SM 
and F. In the ITA description SM ∪ F corresponds 
to one line [GMM0], (x, x, 0), with 0 < x < 1/2. The 
splitting of the 8 i line into two parts is a conse-
quence of the Brillouin-zone shape for the specific 
values of the lattice parameters. This is confirmed 
from Fig. 2 where the corresponding special line 
SM is not split.

Fig. 2. Brillouin zone, asymmetric unit and representation domain of CDML for the arithmetic crystal 4 2m I : c < a: 
space groups 9

24 2 (119)dI m D−  and 10
24 2 (120)dI c D− ; reciprocal-space group *42I m , No. 121: c* > a*. The representa-

tion domain of CDML is different from the asymmetric unit.



188

3. GROUP-SUBGROUP RELATIONS  
OF SPACE GROUPS

3.1. Subgroups of space groups

If two space groups G and H form a group–
subgroup pair G > H, it is always possible to 
represent their relation by a chain of intermediate 
maximal subgroups Zk: G > Z1 > … > Zn = H. For 
a specified index of H in G there are, in general, a 
number of possible chains relating both groups, and 
a number of different subgroups Hj < G isomorphic 
to H. We have developed two basic tools for the 
analysis of the group–subgroup relations between 
space groups: SUBGROUPGRAPH [15], and 
HERMANN [8]. Given the space-group types G 
and H, and an index [i], both programs determine 
all different subgroups Hj of G with the given index, 
and their distribution into classes of conjugate 
subgroups with respect to G. Due to its importance 
in a number of group–subgroup problems, the 
program COSETS is included as an independent 
application. It performs the decomposition of 
a space group in cosets with respect to one of its 
subgroups. Apart from these basic tools, there are 
two complementary programs which are useful in 
specific crystallographic problems that involve 
group–subgroup relations between space groups. 

The program CELLSUB calculates the subgroups 
of a space group for a given multiple of the unit cell. 
The common subgroups of two or three space groups 
are calculated by the program COMMONSUBS. 
In the following we will consider in more details 
the program SUBGROUPGRAPH which is the 
main program for the study of the group-subgroup 
relations between space groups. For a description of 
the rest of the programs of the group-subgroup shell 
the reader is referred to Ref. [2].

3.1.1. The program SUBGROUPGRAPH

The program is based on the data for the maximal 
non-isomorphic subgroups of index 2, 3 and 4 and 
isomorphic subgroups of indices up to 9 of the space 
groups. These data are transformed into a graph with 
230 vertices corresponding to the 230 space-group 
types. If two vertices in the graph are connected 
by an edge, the corresponding space groups form a 
group–maximal-subgroup pair.

The specification of the group–subgroup pair 
G > H leads to a reduction of the total graph to 
a subgraph with G as the top vertex and H as the 
bottom vertex, see the example at the end of this 
subsection. In addition, the G > H subgraph, referred 
to as the general G > H graph, contains all possible 
groups Zk which appear as intermediate maximal 
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Fig. 3. List of k-vector symmetry types (selection) for the arithmetic crystal class 4 2m I : c > a: space groups 
9
24 2 (119)dI m D−  and 10

24 2 (120)dI c D− ; reciprocal-space group *42I m , No. 121 (cf. Fig. 1).



189

subgroups between G and H. It is important to note 
that in the general G > H graphs the space-group 
symbols indicate space-group types, i.e. all space 
groups belonging to the same space-group type are 
represented by one node on the graph. Such graphs 
are called contracted. The contracted graphs have to 
be distinguished from the complete graphs where all 
space groups occurring in a group–subgroup graph 
are indicated by different space-group nodes.

The number of the vertices in the general G > H 
graph may be further reduced if the index of H in 
G is specified. The obtained subgraph is again of 
contracted type. For the cases of specified indices, 
the program SUBGROUPGRAPH produces also 
complete graphs that are equal for subgroups of 
a conjugacy class; the different orientations and/
or origin shifts of the conjugate subgroups Hs are 
manifested by the different transformation matrices 
(P, p)s listed by the program.

Input Information
The space groups  • G and H can be introduced 
by their ITA numbers or by their Hermann-
Mauguin symbols chosen from a list provided 
by the program.
The index of  • H in G is optional.

Output Information
Group-subgroup pair  • G > H with non-specified 
index.

1. The list of the possible intermediate space 
groups Zk relating G and H.

2. A contracted graph.

Each space-group type in the list corresponds to 
one node in the graph, and the maximal subgroups 
are the neighbors (successors) of this node. Group–
subgroup relations occurring in both directions are 
represented by nodes connected by two lines with 
opposite arrows. Maximal isomorphic subgroups 
are shown by loop edges (nodes connected to them-
selves), cf. Fig. 4.

Group-subgroup pair • G > H with specified 
index

1. A list with all possible chains of maximal sub-
groups relating G and H with this index. (The pro-
gram has no access to the data on maximal isomor-
phic subgroups with indices higher than 9).

2. The graphical representation.
The graphical representation contains the inter-

mediate groups that connect G and H with the speci-
fied index. This graph is a subgraph of the general 
graph of maximal subgroups with unspecified index 
and is also of contracted type.

For a given index of H in G, the different sub-
groups Hj of that index are calculated and distrib-
uted into classes of conjugate subgroups of G. The 
subgroups of a conjugacy class form a block where 
each subgroup is specified by the corresponding 
transformation matrix-column pair (P, p)j that re-
lates the default bases of G and Hj. There is also a 
link to a list of the elements of the subgroups trans-
formed to the basis of the group G, which allows 
the identification of those elements of G that are 
retained in the subgroup. The list of transformation 
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Fig. 4. General contracted graph for P622 (No. 177) > C2 (No. 5) as given by the program SUBGROUPGRAPH. The 
nodes of the graph correspond to the space-group types that can appear as intermediate groups in the chain of the group-
subgroup pair P622 > P2. Each edge of the graph corresponds to a maximal subgroup pair of the indicated index [i]. 
Isomorphic subgroups (of indices up to 7) are shown as loops.
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matrices that give the same (identical) subgroup is 
accessible under a separate link (cf. Fig. 7).

The graph contains the intermediate space groups 
Zk for the pair 

i
G H>  but contrary to the graph of the 

previous step, the different isomorphic subgroups 
are represented by different nodes, i.e. the graph is a 
complete one. All isomorphic subgroups Hj are given 
at the bottom of the graph. Their labels are formed 
by the symbol of the subgroup followed by a number 
given in parenthesis which specifies the class of con-
jugate subgroups to which the subgroup Hj belongs.

Note that for group–subgroup pairs with high 
indices, where a lot of intermediate maximal sub-
groups occur, the resulting complete graph with all 
subgroups Hj can be very complicated and difficult 
to overview. Alternatively, a more simple graph as-
sociated to a single specific subgroup Hj (identical 
for all subgroups within a conjugacy class) can also 
be obtained.

Example: Consider the group–subgroup rela-
tions between the groups G = P622, No. 177, and H 
= C2, No. 5. If no index is specified then the graph 
of maximal subgroups that relates P622 and C2 is 
represented as a table indicating the space-group 
types of the possible intermediate space groups Zk, 
and the corresponding indices. The contracted gen-
eral P622 > C2 graph is shown in Fig. 4. Two edges 
with opposite arrows between a group–subgroup 
pair correspond to group–subgroup relations in both 
directions, e.g., the pair P62 and P64. When the in-
dex [i] of the subgroup in the group is specified, the 
resultant graph is reduced to the chains of maximal 
subgroups that correspond to the value of [i]. For 
example, in Fig. 5 the contracted graph P622 > C2 

of index 6 is shown. The data in Fig. 7 and the com-
plete graph shown in Fig. 6 indicate that there are 
six different C2 subgroups of P622 > C2 of index 6, 
distributed in two classes of conjugate subgroups. 
One of the conjugacy classes consists of the three 
different subgroups of space-group type C2 whose 
twofold axes point along [110] , [120] and [210]  of 
P622. The other three subgroups with two-fold axes 
along [100], [010] and [110]  of P622 give rise to 
the second class of conjugate subgroups. The cor-
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Fig. 5. Contracted graph for P622 (No. 177) > C2 (No. 5), 
index 6, as given by the program SUBGROUPGRAPH. 
The nodes of the graph correspond to space-group types. 
Each edge of the graph corresponds to a maximal sub-
group pair.

Fig. 6. Complete graph for P622 (No. 177) > C2 (No. 5), index 6, as given by the program SUBGROUPGRAPH. 
The nodes represent space groups and not space-groups types. The six subgroups of the type C2 are distributed into 
two classes of conjugate subgroups which are indicated in the parentheses after the space-group symbol. The three 
subgroups C2(1) with twofold axes along [110]  , [120] and [210]  of P622 belong to the same conjugacy class. They 
have equal complete single graphs, which differ from the graph of the subgroups C2(2) of the second conjugacy class. 
The latter corresponds to subgroups whose twofold axes point along [100], [010] and [110]  of P622.
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responding transformations can be read from the 
screen-shot table shown in Fig. 7. (Note that the 
standard setting for C2 is the UNIQUE AXIS b setting.) 
The complete graph P622 > C2, index 6 (Fig. 6), 
also shows that there are two different maximal sub-
group chains to each subgroup C2. The subgroups 
of a conjugacy class have the same complete single 
graphs, while the complete graphs of subgroups of 
different conjugacy classes differ in general.

3.2. Supergroups of space groups

The problem of the determination of the super-
groups of a given space group is of rather general 
interest. For several applications it is not sufficient 
to know only the space-group types of the super-
groups of a given group; it is necessary to have 
available all different supergroups Gr > H which 
are isomorphic to G, and are of the same index [i]. 
In the literature there are few papers treating the 
supergroups of space groups in detail [18, 29]. In 
ITA one finds only listings of minimal supergroups 
of space groups which, in addition, are not explicit: 

they only provide for each space group H the list 
of those space-group types in which H occurs as a 
maximal subgroup (cf. Section 2.1). It is not trivial 
to determine all supergroups Gr > H if only the 
types of the minimal supergroups are known. The 
Bilbao Crystallographic Server offers two basic 
programs [16] that solve that problem for a given 
finite index [i]: (i) the program MINSUP, which 
gives all minimal supergroups of indices 2, 3, 4, 
5, 7 and 9 of a given space group; and (ii) the pro-
gram SUPERGROUPS, which calculates all dif-
ferent supergroups of a given space-group type and 
a given index. Similar to the case of subgroups, we 
have developed two complementary programs that 
involve the calculation of supergroups of space 
groups. The program CELLSUPER calculates the 
supergroups of a space group for a given [iL] in-
dex, while the program COMMONSUPER is for 
the computation of common supergroups of two or 
more space groups.

The following discussion concerns the two basic 
programs MINSUP and SUPERGROUPS. For de-
tails on the complementary programs for group-su-
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Fig. 7. Screen-shot of the list of the six subgroups C2 (No. 5) of P622 (No. 177), index 6, as given by the program 
SUBGROUPGRAPH. The subgroups (C2)j, j = 1, . . . , 6 are distributed in two conjugacy classes and each subgroup 
is specified by its transformation matrix (P, p)j.
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pergroup relations between space groups the reader 
is referred to Ref. [2].

3.2.1. The programs MINSUP  
and SUPERGROUPS

The determination of all supergroups Gr of a giv-
en space-group type G and an index [i] of a space 
group H can be done by inverting the data on the 
subgroups Hs of G of index [i]. For that it is first 
necessary to determine all subgroups Hs < G of the 
same index and distribute them into classes of con-
jugate subgroups with respect to G. It is sufficient to 
choose a representative Hr from each class of con-
jugate subgroups, specified by (P, p)r, and apply 
(P, p)r

–1 to the group G in order to obtain the super-
group Gr. Further supergroups may be generated 
by the coset representatives of the decomposition 
of NA(H) relative to (NA(H) ∩ NA(G)). In order to 
obtain all supergroups of a given space group type 
and index it is sufficient to apply the procedure to 
one representative of each class of conjugate sub-
groups Hs < G of index [i].

Input Information of MINSUP
The  • ITA number (or the Hermann-Mauguin 

symbol) of the group for which the minimal super-
groups have to be determined.

The type of supergroup, it can be chosen from  •
a table (returned by the program) which contains: 
the ITA number of the minimal supergroup, its 
Hermann-Mauguin symbol and the index of the 
group in the supergroup. There is also a link to the 
list with the transformation matrices that relate the 
basis of the supergroup with that of the subgroup.

It is necessary to select the type of the normal- •
izers of the group and the supergroup. By default 
the Euclidean normalizers of general cell metrics 
are used as listed in Tables 15.2.1.3 and 15.2.1.4 of 
ITA. The affine normalizers of the space groups (ex-
cept triclinic and monoclinic) are also accessible.

Input Information of SUPERGROUPS
The  • ITA numbers of the space groups G and H, 

and their index.
The type of the normalizers of the group and  •

the supergroup. As in the case of MINSUP, the 
spacegroup normalizers used by default are the 
Euclidean normalizers. Also, there is a possibility 
for the user to use the affine normalizers given in 
ITA or to provide a specific one.

Output Information of MINSUP  
and SUPERGROUPS

The transformation matrix (1. P, p) that relates 
the default basis of the supergroup with that of the 
subgroup.

One representative from each coset in the 2. 
decomposition of the supergroup G with respect to 
the group H.

The full cosets of the decomposition 3. G : H. 
The elements of G are listed with respect to the 
default basis of the subgroup H.

From the considerations given above it should 
have become clear that the aim of the presented 
procedure and the supergroup programs is to solve 
the following ‘purely’ group-theoretical problem: 
Given a group–subgroup pair of space groups, G > 
H, determine all supergroups G of H, isomorphic to 
G. The procedure does not include any preliminary 
checks on the compatibility of the metric of the 
studied space group with that of a supergroup. As 
a consequence, in some particular cases when the 
supergroups and the groups belong to different 
crystal systems, it may happen that the determined 
supergroups are not space groups but just affine 
groups isomorphic to space groups (cf. [18]).

The number of supergroups of a space group H 
of a finite index is not always finite. This is the case 
of a space group H whose normalizer N(H) contains 
continuous translations in one, two or three inde-
pendent directions (cf. ITA, Part 15). As typical ex-
amples one can consider the infinitely many centro-
symmetrical supergroups of the polar groups: there 
are no restrictions on the location of the additional 
inversion centre on the polar axis. For such group–
supergroup pairs there are up to three parameters r, 
s and t in the transformation matrix and in the trans-
lational part of the coset representatives. The differ-
ent values of the parameters corresponds to differ-
ent supergroups of the same space-group type.

3.3. Relations of Wyckoff positions  
for a group–subgroup pair of space groups

Consider two group–subgroup related space 
groups G > H. Atoms which are symmetrically 
equivalent under G, i.e. belong to the same orbit of 
G, may become non-equivalent under H, (i.e. the 
orbit splits) and/or their site symmetries may be re-
duced. The orbit relations induced by the symmetry 
reduction are the same for all orbits belonging to 
a Wyckoff position, so one can speak of Wyckoff-
position relations or splitting of Wyckoff positions. 
Theoretical aspects of the relations of the Wyckoff 
positions for a group–subgroup pair of space groups 
G > H have been treated in detail by Wondratschek 
[28]. Part 3 of ITA1 contains the tables of the 
Wyckoff-position splittings for all space groups 
and their maximal subgroups. However, for certain 
applications it is more comfortable to have the ap-
propriate computer tools for the calculations of the 
Wyckoff-position splittings for G > H: for example, 
when H is not a maximal subgroup of G, or when 
the space groups G > H are related by transforma-
tion matrices different from those listed in the tables 
of ITA1. The program WYCKSPLIT [20] calculates 
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the Wyckoff-position splittings for any group–sub-
group pair. In addition, the program provides fur-
ther information on Wyckoff-position splittings that 
is not listed in ITA1, namely, the relations between 
the representatives of the orbit of G and the corre-
sponding representatives of the suborbits of H.

3.3.1. The program WYCKSPLIT

The program WYCKSPLIT calculates the 
splitting of the Wyckoff positions for a group–
subgroup pair G > H, given the corresponding 
transformation relating the coordinate systems 
of G and H. The additional data on the explicit 
correspondence between the representatives of the 
orbit of G and the corresponding representatives 
of the suborbits of H are calculated by comparing 
the values of the fixed parameters and the variable 
parameter relations in both sets.

Input Information
The specification of the space groups  • G and H 

by their ITA numbers.
The transformation matrix–column pair ( • P, p) 

that relates the basis of G to that of H. The user can 
input a specific transformation or can be linked to 
the ITA1 database for the maximal subgroups of G. 
In the case of a non-maximal subgroup, the program 
SUBGROUPGRAPH provides the transformation 
matrix(ces) for a specified index of H in G. The 
transformations are checked for consistency with the 
default settings of G and H used by the program.

The Wyckoff positions  • WG to be split can be 
selected from a list. In addition, it is possible to 
calculate the splitting of any orbit specified by the 
coordinate triplet of one of its points.

Output Information
The splittings of the selected Wyckoff po-1. 

sitions WG into Wyckoff positions WH
l of the sub-

group, specified by their multiplicities and Wyckoff 
letters.

The correspondence between the representa-2. 
tives of the Wyckoff position and the representatives 
of its suborbits is presented in a table where the co-
ordinate triplets of the representatives of WG are re-
ferred to the bases of the group and of the subgroup.

4. REPRESENTATIONS  
OF CRYSTALLOGRAPHIC POINT  

GROUPS AND SPACE GROUPS

The Bilbao Crystallographic Server provides 
several programs facilitating the application of 
representation theory to specific problems of solid-
state physics and crystallography-related fields. 
The computing packages support certain essential 
(and more involved from a mathematical point of 

view) steps in the related group-theoretical studies. 
The server offers access to the basic modules 
for handling space-group (REPRES) and point-
group (POINT) representations, it enables the 
study of the correlations between irreps of group-
subgroup related space groups (CORREL) and the 
decomposition of Kronecker direct products of 
space-group irreps (DIRPRO). In the following, 
we explain the necessary input data and provide 
details on the output results of the basic programs 
REPRES and POINT. For a presentation of the 
rest of the programs treating representations of 
crystallographic groups and the group-theoretical 
background of the developed programs, the reader 
is referred to Ref. [3].

4.1. Space-group representations

There exist several reference sets of tables of 
space-groups irreps (see e.g. CDML, and the ref-
erences therein). However, the available data have 
important drawbacks related to the lack of full 
space-group representations due to the limitations 
and/or specificity in the choice of the k-vectors. In 
addition, the used space-group settings are often not 
compatible with those of ITA. These disadvantages 
are overcome by the program REPRES which com-
putes the irreps of space groups explicitly: For any 
space group G and a k-vector, the corresponding lit-
tle group Gk, the allowed (small) irreps of Gk and 
the matrices of the full-group irreps are constructed. 
As part of the working environment of the Bilbao 
Crystallographic Server, the program REPRES pro-
vides the irrep data in a format suitable for its fur-
ther use as input for other programs on the server.

4.1.1. The program REPRES

REPRES calculates the irreps of space groups 
following a general scheme based on a normal-
subgroup induction method: the irreps of a space 
group G are constructed starting from those of its 
translation subgroup TG which is a normal subgroup 
of G, TG � G. The main steps of the procedure 
involve the construction of all irreps of TG and their 
distribution into orbits under G, determination of 
the corresponding little groups and the allowed 
(small) irreps and finally, construction of the irreps 
of G by induction from the allowed irreps. The most 
involved step in the procedure is the determination 
of the allowed irreps of the little group. In the 
majority of books on irreps of space groups this 
problem is solved by applying the theory of the 
so-called projective representations. Here we have 
preferred another approach for the construction of 
the allowed irreps which is a slight modification of 
an induction procedure originally proposed by Zak 
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[30]. It is based on the fact that all space groups are 
solvable groups, i. e. for every space group one can 
construct a composition series G � H1 � H2 . . . � T 
such that all factor groups Hi/Hi+1 are cyclic groups 
of order 2 or 3.

Input Information
• Space group data: As an input the program 

needs the specification of the space group G which 
can be defined by its sequential ITA number. Here, 
as well as in the rest of programs of the Bilbao 
Crystallographic Server the default settings of 
the space groups are used for the calculations. 
The program REPRES can treat space groups in 
unconventional settings, once the transformation 
matrixcolumn pair (P, p) to the corresponding 
default setting is known.

• k-vector data: There are two different ways 
to introduce the k-vector: either by choosing it 
from a table where the different symmetry types 
of wave vectors are listed explicitly, or by typing 
in the k-vector coefficients directly. The program 
accepts k-vector coefficients referred to different 
coordinate systems of the reciprocal space. For 
its internal calculations REPRES uses k-vector 
coefficients (k1, k2, k3) referred to a basis which is 
dual to the default ITA settings of the space groups 
(called conventional k-vector coefficients). The 
program accepts also k-vector coefficients referred 
to a primitive basis of the reciprocal lattice as given 
for example, in CDML tables of space-group irreps. 
If a non-conventional setting for the space group 
is chosen (2.1.1), then the corresponding ‘non-
conventional’ k-vector coefficients

(k′1, k′2, k′3) = (k1, k2, k3)P,

can be given as input data. Note that the program 
does not accept variables (free parameters) as 
coefficients of the wave vector.

Output Information
1. Information on the space group G:

Non-translational generators of  • G listed as ma-
trix-column pairs (W, w), i.e. in (3. 4) matrix form 
consisting of a (3 × 3) matrix part W and a (3 × 1)-
column part w:

11 12 13 1

21 22 23 2

31 32 33 3

( , ) ;
W W W w

W w W W W w
W W W w

 
 =  
 
 

The sequence of generators follows that of ITA 
for the conventional settings of the space groups;

List of the coset representatives ( • W, w) of 
the decomposition of G with respect to TG (known 
also as translational coset representatives given in 
(3 × 4) matrix form. The numbers coincide with 
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the sequential numbers of the general-position 
coordinate triplets listed in ITA.

2. k-vector data:
The program lists the input values of the 

k-vector coefficients followed by the corresponding 
conventional coefficients (k1, k2, k3). The coefficients 
of the arms of the wave-vector star *k are referred 
also to the basis that is dual to the default setting of 
the space group. The program also asignes a label 
to the given k-vector according to the classification 
scheme of CDML.

3. Information on the little group Gk:
A set of coset representatives of  • G with respect 

to the little group Gk;
A set of non-translational generators and a set  •

of translational coset representatives of Gk given as 
(3×4) matrices;

Little-group irreps presented in a matrix form  •
for the translational coset representatives of Gk in a 
consecutive order. The labels of the irreps follow 
the classification scheme of CDML. The (complex) 
matrix elements are specified by their moduli and 
phase angles in degrees [○].

4. Full-group representations:
The program lists the characters of the full-

group representations for all translational coset 
representatives of the group G. In addition, the pairs 
of full-group irreps that form physically-irreducible 
representations are also indicated.

As an option, the program can list the full-group 
irreducible representations of the non-translational 
generators of the space group (or any element of the 
space group specified by the user) in a blockmatrix 
form: for a given representation and a generator, 
the program prints out the induction matrix whose 
non-zero entries, specified by its row and column 
indices, indicate a matrix block corresponding to a 
little-group matrix.

Example: Irreps of P42/mbc (No. 135) for k = 
T(0.37, 1/2, 1/2)

The input data consists in the specification of the 
space group P42/mbc by its ITA number, No. 135, 
and the data for k-vector coefficients, k = T(0.37, 
1/2, 1/2).

The discussion of the output follows the order of 
the results as they appear in the output file.

1. Space-group information block:
(a) The generators of P42/mbc (with the exception 

of the generating translations) are listed in the same 
sequence as they appear in ITA: (1, o), (2z, o), (4z, τ1), 
(2y, τ2) (1, )o , with o = (0, 0, 0), τ1 = (0, 0, 1/2) and τ2 
= (1/2, 1/2, 0)2.

2 To make the description more compact we use a symbolic 
notation for the space-group elements.
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(b) Decomposition of P42/mbc relative to its trans-
lation subgroup with coset representatives as given 
in ITA: (1, o), (2z, o), (4z, τ1), (4z

3, τ1), (2x, τ2), (2y, τ2), 
(2xx, τ1+ τ2), 1 2(2 , )xx +τ τ , (1, )o , (mz, o), 1(4 , )z τ , 

3
1(4 , )z τ , (mx, τ2), (my, τ2), (mxx, τ1 + τ2) 1 2( , )xxm +τ τ .

2. k-vector information block:
(a) The input k-vector coefficients T(0.37, 1/2, 

1/2) followed by the corresponding conventional 
coefficients. (In all space groups with primitive lat-
tices, the k-vector coefficients, referred to a primi-
tive basis of the reciprocal space (CDML), coincide 
with the conventional k-vector coefficients.)

(b) The k-vector star: *T = {(0.37, 1/2, 1/2), 
(0.63, 1/2, 1/2), (1/2, 0.37, 1/2), (1/2, 0.63, 1/2)}.

(c) The little group GT = P21am is specified by 
the coset representatives of its decomposition with 
respect to the translation subgroup: (1, o), (2x, τ2), 
(mz, o), (my, τ2). The little co-group TG  = {1, 2x, my, 
mz} is isomorphic to the point group 2zmm.

(d) The coset representatives of the decomposi-
tion of P42/mbc relative to P21am are as follows: 
{(1, o), (2z, o), (4z, τ1), and (43

z, τ1)}.
3. Allowed irreps of GT

As the little group GT is non-symmorphic and the 
k vector is on the surface of the Brillouin zone, it is 
not possible to derive directly the allowed irreps of 
P21am from the point-group irreps of the little co-
group 2mm. The program determines the allowed 
irreps following the composition series for the little 
group P21am: P21am � Pm � T .

The little group of the k-vector has 4 allowed 
irreps:

(W, w). For example, the matrix of the full-group 
irrep for the generator (1, )o  of P42/mbc (No. 5 in 
the list of generators)

 * ,1

0 1 0 0
1 0 0 0

(1, )
0 0 0 1
0 0 1 0

TD o

      =      

is presented as a (4 × 4) induction matrix

0 1 0 0
1 0 0 0

(1, ) ,
0 0 0 1
0 0 1 0

M o

      =      

with the following (1 × 1) blocks:

Block (1, 2) = (1.000, 0.0);
Block (2, 1) = (1.000, 0.0);

Block (3, 4) = (1.000, 180.0);
Block (4, 3) = (1.000, 180.0).

4.2. Point group representations
The information about the 32 (non-magnetic) 

crystallographic point groups plays a fundamental 
role in many applications of crystallography. In the 
literature, there exists a lot of information about 
crystallographic point groups and their representa-
tions. Some complete tables are given in Koster et 
al. [19], Bradley & Cracknell [7], Altmann & Herzig 
[1] (and the references therein). In our case, a selec-
tion of these data have been recalculated and is now 
available online via the Bilbao Crystallographic 
Server. The point-group databases are part of the 
core shell of the server. They provide essential in-
formation for a point-group analysis in applications 
related to crystallographic, solid-state or phase tran-
sitions problems. The information about the irreps 
of the 32 point groups is obtained from the program 
REPRES for the particular case of k = Γ(0, 0, 0). 
The generated point-group data have been stored as 
an XML database of the server.

4.2.1. The program POINT
The program POINT displays a set of tables for 

each of the 32 crystallographic point groups which 
are specified by their international (Hermann-
Mauguin) and Schoenflies symbols:

1. Character table. The character table provides 
the characters of the ordinary irreps of the chosen 
point group. The irreps are labelled in the notation 
of Mulliken [24] and by the Γ labels introduced by 
Bethe [6], see also Koster et al. [19]. The matrices 

ε1 = exp(i113.4) and ε2 = exp(i293.4)

4. Full-group irreps
The (complex) characters of the full-group irreps 

for all translational coset representatives of P42/mbc 
are represented by by their moduli and phase angles 
in degrees [○]. The physicallyirreducible represen-
tations are formed by the pairs {D*T, 1, D*T, 4} and 
{D*T, 2, D*T, 3}.

The matrices of the full-group irreps for the non-
translation generators are presented in a blockmatrix 
form. The program lists separately the induction 
matrix M (W, w) and the corresponding blocks of 
the little-group representation matrices specified by 
the row-column indices of the nonzero entries of M 
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of the degenerate irreps as calculated by REPRES 
are also accessible. The number of point-group 
elements in a conjugacy class is indicated by the 
listed multiplicity. In addition, the transformation 
properties of the cartesian tensors of rank 1 (vectors 
and axial vectors) and 2 are displayed. (The tensor of 
rank 0 belongs always to the totally symmetric irrep 
and is not listed explicitly). Cartesian tensors that 
transform according to two- or three-dimensional 
irreps are joined by brackets.

2. Subgroup table. The point-group types of the sub-
groups of a point group are listed with the correspond-
ing indices with respect to the initial point group.

3. Irrep multiplication table. The table shows 
the decomposition into irreducible constituents of 
the Kronecker (direct) product of any pair of point-
group irreps.

4. Tensor representations. A physical property 
can be represented by a tensor which transforms, 
in general, according to a reducible representation. 
Any reducible representation can be decomposed 
into irreducible constituents applying the so-called 
reduction (“magic”) formula:

,i i
i

nΓ Γ⊕∼  where  
*

g

1 (g) (g).i in
G

χ χ= ∑

Here, Γ represents a reducible representation expressed 
in terms of its irreps Γi. The multiplicity of the irrep is 
given by ni, G

 
is the order of the point group and χ(g) 

and χi(g) are the corresponding characters of the reduc-
ible representation Γ and the irrep Γi.

The tensor-representation tables one finds the 
decompositions into irreducible constituents of rep-
resentations related to some important tensors (and 
their powers), such as the vector V (polar) or the 
pseudovector A (axial), their symmetrized [V2] or 
antisymmetrized squares, etc.

5. Selection rules for fundamental transitions. 
The table displays the selection rules for infrared 
and Raman vibrational (phonon) transitions. The 
data in the first row of each table (specified by the 
trivial irrep label) corresponds to the usual infrared 
and Raman selection rules.

6. Subduction from the rotation group irreps. 
Given a representation of the rotation group of di-
mension 2l+1, l = 0,. . . ,9, the table lists the point-
group irreps which appear in its subduction to the 
chosen point group.

5. CONCLUSIONS
The Bilbao Crystallographic Server site provides 

a free online interface for different crystallographic 
databases and programs at www.cryst.ehu.es. 
The working enviroment is divided into several 

shells according to different topics, from simple 
retrieval tools for access to crystallographic data 
to more sophisticated solid-state applications.The 
programs available on the server do not need a 
local installation the only requirement is an Internet 
connection and a web browser. The programs on the 
Bilbao Crystallographyc Server have user-friendly 
interfaces with links to documentation an online help 
for each of the consecutive steps in a calculation. 
One of the important advantages of the server is 
that the different programs can communicate with 
each other, so that the output of some programs 
is used directly as input dato to other. In that way 
the server has turned into a workin environment 
with the appropiate tools for treating problems of 
theoretical crystallography, solid-state physics and 
crystal chemistry.
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(Резюме)

Билбао Кристалографски Сървър е уебсайт с кристалографски база данни и програми, достъпни онлайн 
(www.cryst.ehu.es). В продължение на повече от 10 години сървърът предоставя кристалографска информа-
ция, като предлаганите данни и програми постоянно се обновяват и разширяват. Програмите на сървъра не 
се нуждаят от локално инсталиране и могат да бъдат използвани безплатно. Билбао Кристалографски Сървър 
предоставя свободен достъп до информация от общ характер свързана с кристалографските групи на симе-
трия (генератори, общи и специални Wyckoff позиции, зони на Brillouin и т.н.). Освен приложенията за ди-
ректно четене на съхраняваните данни, сървърът разполага с програми за анализ на връзките група–подгрупа 
за пространствените групи, техните представяния и т.н. Има също така програмни продукти за изучаване на 
специфични проблеми от физиката на твърдото тяло, структурна химия и кристалография.


