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The Brillouin-zone database of the Bilbao Crystallographic Server (http://

www.cryst.ehu.es) offers k-vector tables and figures which form the background

of a classification of the irreducible representations of all 230 space groups. The

symmetry properties of the wavevectors are described by the so-called

reciprocal-space groups and this classification scheme is compared with the

classification of Cracknell et al. [Kronecker Product Tables, Vol. 1, General

Introduction and Tables of Irreducible Representations of Space Groups (1979).

New York: IFI/Plenum]. The compilation provides a solution to the problems of

uniqueness and completeness of space-group representations by specifying the

independent parameter ranges of general and special k vectors. Guides to the

k-vector tables and figures explain the content and arrangement of the data.

Recent improvements and modifications of the Brillouin-zone database,

including new tables and figures for the trigonal, hexagonal and monoclinic

space groups, are discussed in detail and illustrated by several examples.

1. Introduction

The Bilbao Crystallographic Server (http://www.cryst.ehu.es) is

a web site offering online crystallographic programs and

databases (Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et al.,

2006; Aroyo et al., 2011). The aim of this contribution is to

present the Brillouin-zone database available on the server

focusing on the recent modifications and improvements of the

wavevector data. The database includes for all space groups

Brillouin-zone figures and tables of the wavevectors that form

the background of the classification of the irreducible repre-

sentations of space groups. The wavevectors of reciprocal

space are classified in terms of their symmetry described by

the symmorphic space groups available in Volume A of

International Tables for Crystallography (2002) (henceforth

referred to as ITA). This is possible because of the iso-

morphism between the reciprocal-space groups, describing the

symmetry of the wavevectors, and the symmorphic space

groups in direct space (Wintgen, 1941). In the database, the

ITA classification scheme is compared with the ‘traditional’

classification of the wavevectors available in the tables of

space-group representations by Cracknell et al. (1979) (in the

following, referred to as CDML).

The recent modifications of the database focus on a general

improvement and homogenization of the stored data and

a clearer presentation of the Brillouin-zone figures. The

Brillouin-zone figures for trigonal, hexagonal and rhombo-

hedral space groups are redrawn, applying a much more visual

clinographic projection, that had also been used for the rest of

the space groups. The figures and tables for monoclinic space

groups in unique axis b setting have also been included in the

database.

In addition, we have developed an auxiliary computer tool

for the complete characterization of the wavevectors: given

the wavevector coefficients referred to primitive or conven-

tional dual bases, the program assigns the corresponding

wavevector symmetry type, specifies its CDML label, deter-

mines the little co-group of the wavevector and generates the

arms of the wavevector star.

Some basic concepts related to the reciprocal-space groups

and their application in the classification of wavevectors are

briefly reviewed in x2. Readers are referred to Aroyo &

Wondratschek (1995) and to ch. 1.5 of Volume B of Interna-

tional Tables for Crystallography (2010) (referred to as ITB)

for more details of the reciprocal-space-group approach. Short

guides to the k-vector data displayed in the figures and tables

of the Brillouin-zone database are presented in x3. The

examples of x4 illustrate the new data included in the data-

base.

1 This article forms part of a special issue dedicated to mathematical
crystallography, which will be published as a virtual special issue of the
journal in 2014.
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2. Classification of wavevectors

Referred to a coordinate system consisting of an origin O and

a basis fa1; a2; a3g, the symmetry operations of a space group G

are described by matrix-column pairs (W;w). The (3� 3)

matrices W correspond to the linear parts of the symmetry

operations while the translation parts are described by the

(3� 1) columns w. The infinite set of translations ti of G form

the translation group T G of G. For each translation its trans-

lation vector is defined and the set of all translation vectors of

T G is called the vector lattice L of G. The set of linear parts of

the symmetry operations of G form a finite group which is

called the point group PG of the space group G, also designated

by G in some of the books on representation theory.

The determination, classification, labelling and tabulation

of irreducible representations (irreps) of space groups are

based on the use of wavevectors k. The k vectors are vectors of

the reciprocal space of G and can be represented as

k ¼
P3

i¼1 kia
�
i where fa�1; a�2; a�3g is the basis of the reciprocal

lattice L�. The basis fa�1; a�2; a�3g is the dual basis of fa1; a2; a3g

of L and its vectors a�i are defined by the relations

ai � a
�
j ¼ 2��ij, where �ij is the Kronecker symbol. The

symmetry properties of the wavevectors are described by the

so-called reciprocal-space groups ðGÞ
� whose elements are

operations of the type ðW;KÞ ¼ ðI;KÞðW; oÞ with W 2 G and

K 2 L� [I is the (3� 3) unit matrix and o is the (3� 1) zero

column]. The group ðGÞ� is the semidirect product of the point

group G and the translation group of the reciprocal lattice L�

of G.

From its definition it follows that the reciprocal-space group

ðGÞ
� is isomorphic to a symmorphic space group G0 (for

symmorphic space groups, cf. ITA, x8.1.6). Space groups of the

same type define the same type of reciprocal-space group ðGÞ�.

In addition, as ðGÞ� does not depend on the column parts of

the space-group operations, all space groups of the same

arithmetic crystal class determine the same type of ðGÞ�

(Wintgen, 1941) (for the definition and symbols of arithmetic

crystal classes, see x8.2.3 of ITA). For about 2/3 of the space

groups, ðGÞ� and G belong to the same arithmetic crystal class,

i.e given the space group G, its reciprocal-space group ðGÞ� is

isomorphic to the symmorphic group G0 related to G.

However, there are a number of cases when the arithmetic

crystal classes of G and ðGÞ� are different. For example, if the

lattice symbol of G is F or I, then the lattice symbol of ðGÞ� is I

or F. (The tetragonal space groups form an exception to this

rule; for these the symbol I persists.) The rest of the exceptions

are listed in Table 1.

To find all irreps of G, it is necessary to consider only the

wavevectors of the so-called representation domain. It is

defined as a simply connected part of the (first) Brillouin zone

(a unit cell of the reciprocal space) which contains exactly one

k vector of each orbit of k. One of the main difficulties in

comparing the published data of irreps of space groups is due

to different choices of representation domains used by

different authors [see e.g. Table 7 in Stokes & Hatch (1988)].

The isomorphism between the reciprocal-space groups and the

symmorphic space groups permits the application of crystal-

lographic conventions in the classification of the wavevectors.

For example, the unit cells of the symmorphic groups listed in

ITA can replace the Brillouin zones as unit cells of the reci-

procal space. The asymmetric units of space groups can serve

as representation domains. The advantage of choosing the

crystallographic unit cells and their asymmetric units becomes

especially evident in the low-symmetry space groups where

the Brillouin zones may even belong to different topological

types depending on the ratios of the lattice parameters. Faces

and lines on the surface of the Brillouin zone may appear or

disappear or change their relative sizes depending on the

lattice parameters. On the contrary, the unit cells and their

asymmetric units are independent of the ratios of the lattice

parameters. For that reason, Miller & Love (1967), Bradley &

Cracknell (1972) and CDML replace the different complicated

bodies of the Brillouin zones of the triclinic and monoclinic

lattices by simple primitive unit cells of the reciprocal lattices.

The action of the reciprocal-space groups ðGÞ� on the

wavevectors results in their distribution into orbits of

symmetry-equivalent k vectors with respect to ðGÞ�. Thanks to

the isomorphism of ðGÞ� and the symmorphic space groups G0,

the different types of k vectors correspond to the different

kinds of point orbits (Wyckoff positions) of G0. In this way, a

complete list of the special sites in the Brillouin zone of ðGÞ� is

provided by the Wyckoff positions of G0 found in ITA. The site

symmetry of ITA corresponds to the little co-group of the

wavevector; the number of arms of the star of the wavevector

follows from the multiplicity of the Wyckoff position. The

Wyckoff positions with 0, 1, 2 or 3 variable parameters

correspond to special k-vector points, k-vector lines, k-vector

planes or to the set of all general k vectors, respectively. A

k-vector type, i.e. the set of all k vectors corresponding to a

Wyckoff position, consists of complete orbits of k vectors and

thus of full stars of k vectors. The different orbits (and stars) of

a k-vector type are obtained by varying the free parameters.

Correspondingly, the irreps of k vectors of a k-vector type are

interrelated by parameter variation and are said to belong to

the same type of irreps (Boyle, 1986). In this way all wave-

vector stars giving rise to the same type of irreps are related to

the same Wyckoff position and designated by the same

Wyckoff letter.

It is worth noting that being of the same k-vector type is

only a necessary but not a sufficient condition for k-vector

equivalence: two wavevectors k1 and k2 are called equivalent if

they belong to the same orbit of k vectors, i.e. if there exists

W 2 G and K 2 L� such that k2 ¼ k1Wþ K.
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Table 1
Reciprocal-space groups for the cases when the arithmetic crystal classes
of G and G� are different.

Arithmetic
crystal class

Reciprocal-
space group

Arithmetic
crystal class

Reciprocal-
space group

4m2I I42m 42mI I4m2
321P P312 312P P321
3m1P P31m 31mP P3m1
31mP P3m1 3m1P P31m
6m2P P62m 62mP P6m2



A complete set of irreps of G is derived by considering

exactly one k-vector representative per k-vector orbit. To

achieve that it is necessary to specify the exact parameter

ranges of the independent k-vector regions within the

asymmetric unit or the representation domain. However,

such data are not available in the literature. One of the

aims of the Brillouin-zone database of the Bilbao Crystal-

lographic Server is to provide a solution to the problems of

uniqueness and completeness of space-group irreps by

listing the exact parameter ranges for general and special k

vectors. For this purpose it is advantageous to describe the

different k-vector stars belonging to a Wyckoff position

applying the so-called uni-arm description. Two k vectors of a

Wyckoff position are called uni-arm if one can be obtained

from the other by parameter variation. The description of

k-vector stars of a Wyckoff position is called uni-arm if

the k vectors representing these stars are uni-arm. Frequently,

in order to achieve uni-arm description, it is necessary to

transform k vectors to equivalent ones. In addition, to enable a

uni-arm description, symmetry lines outside the asymmetric

unit may be selected as orbit representatives. Such a segment

of a line is called a flagpole. In analogy to the flagpoles,

symmetry planes outside the asymmetric unit may be selected

as orbit representatives. Such a segment of a plane is called a

wing.

For details on the procedure for the determination of the

independent ranges of the k-vector regions of the asymmetric

units, the reader is referred to ch. 1.5 of ITB. The monoclinic

example in x4 illustrates the utility of the uni-arm description

in the analysis of the k-vector parameter ranges.

3. Brillouin-zone database

The k-vector data of the Brillouin-zone database of the

Bilbao Crystallographic Server are accessed by the retrieval

tool KVEC (http://www.cryst.ehu.es/cryst/get_kvec.html)

which uses as input the ITA number of the space group.

The output consists essentially of wavevector tables and

figures. There are several sets of figures and tables for the

same space group when its Brillouin-zone shape depends on

the lattice parameters of the reciprocal lattice. The k-vector

data are the same for space groups of the same arithmetic

crystal class.

In the k-vector tables, the wavevector data of CDML are

compared with the Wyckoff-position data of ITA. Each

k-vector type is specified by its label and coefficients as listed

in CDML. The corresponding Wyckoff positions are described

by Wyckoff letters, multiplicities and site-symmetry groups.

The parameter descriptions specify the independent para-

meter ranges chosen in such a way that each orbit of the

Wyckoff positions of ITA, i.e. each k-vector orbit, is also listed

exactly once. In the figures, the Brillouin zones of CDML and

the conventional unit cells of ITA are displayed. The asym-

metric units play the role of the representation domains of the

Brillouin zones and they are chosen often in analogy to those

of ITA.

3.1. Guide to the k-vector tables

Each k-vector table is headed by the corresponding

Hermann–Mauguin symbol of the space group, its ITA

number and the symbol of the arithmetic crystal class to which

the space group belongs. If there is more than one table for an

arithmetic crystal class, then these tables refer to different

geometric conditions for the lattice parameters that are indi-

cated after the symbol of the arithmetic crystal class. For

example, the conditions ‘
ffiffiffi
3
p

a<
ffiffiffi
2
p

c’ or ‘
ffiffiffi
3
p

a>
ffiffiffi
2
p

c’ distin-

guish the two topologically different Brillouin zones for the

rhombohedral space groups, see e.g. Table 5 and Figs. 3 and 4.

The space groups of the arithmetic crystal class are also

indicated in the headline block. They are followed by the

symbol of the reciprocal-space-group type [e.g. ‘ðR3Þ�, No.

146’ for the arithmetic crystal class 3R in Table 5] together

with the conditions for the lattice parameters of the reciprocal

lattice, if any. From the k-vector table there is a link to the

corresponding Brillouin-zone figure.

Each table consists of two main parts. The first two columns

under the heading ‘k-vector description’ refer to the descrip-

tion of k vectors found in Tables 3.9 and 3.11 of CDML. It

consists of labels of k vectors (column 1) and their parameter

descriptions (column 2). (Note that CDML substitute the

Greek-character labels for the symmetry points and lines

inside the Brillouin zone by a symbol consisting of two Roman

characters, e.g. GM for �, LD for � etc.) No ranges for the

parameters are listed in CDML. Apart from the labels of

points, lines and planes of CDML which are retained in the

listings of the Brillouin-zone database, many new names have

been given to points and lines which are not listed in CDML.

In such cases, lines equivalent, for example, to a line H or the

end points of a line H, as well as points equivalent to a point H

may also be designated by the letter H but distinguished by

indices. In order to recognize points and lines easily, the

indices of points are always even: H0; H2; H4; those of lines

are always odd: H1; H3. The new k vectors are equivalent to

those of CDML and are necessary to enable the uni-arm

description of the k-vector types. The sign ‘�’ relates

equivalent k vectors, see e.g. the lines S � S1 ¼ ½HL0� in Table

4 and Fig. 2, or the line P � P1 ¼ ½P0T� and the point T � T2

in Table 5 and Fig. 3.

Different k vectors with the same CDML label always

belong to the same k-vector type, i.e. they correspond to the

same Wyckoff position. k Vectors with different CDML labels

may either belong to the same or to different types of k

vectors. When k vectors with different CDML labels belong to

the same k type, the corresponding parameter descriptions are

followed by the letters ‘ex’ (from Latin, with the meaning of

‘out of’ or ‘from’). Symmetry points, lines of symmetry or

planes of CDML, related to the same Wyckoff position, are

grouped together in a block. In the k-vector tables, neigh-

bouring Wyckoff-position blocks are distinguished by a slight

difference in the background colour. For example, the k

vectors of R3 (Table 5) are distributed in two k-vector types:

(i) the Wyckoff-position block 3a formed by special wave-

vectors of a k-vector line along a threefold axis, and (ii)
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general k vectors corresponding to the general-position block

9b of R3. The parameter description of the uni-arm region of a

k-vector type is shown in the last row of the corresponding

Wyckoff-position block.

The parameter description of a region may be described by

the vertices of that region in brackets [. . .]. One character in

brackets, e.g. [P], means the point P. Two points within the

brackets, e.g. [AB], means the line from A to B. Three points

within the brackets, e.g. [ABC], means the triangular region of

a plane with the vertices A, B and C. Four or more points may

mean a region of a plane or a three-dimensional body,

depending on the positions of the points. The meaning can be

recognized by studying the corresponding figure. Commas

between the points, e.g. [A;B;C], indicate the set {A;B;C} of

the three points A, B and C.

The wavevector coefficients of CDML (column 2 of the

k-vector tables) refer always to a primitive basis irrespective

of whether the conventional description of the space group in

ITA is with respect to a centred or primitive basis. For that

reason, for space groups with centred lattices, the wavevector

coefficients with respect to the usual conventional reciprocal

basis, i.e. dual to the conventional centred basis in direct space

of ITA, are also listed in the column under the heading

‘Conventional basis’ of the k-vector tables. The relations

between the ‘conventional’ ðk1; k2; k3Þ and ‘primitive’ coef-

ficients ðkp1; kp2; kp3Þ of the wavevectors are summarized in

Table 2. For example, a k-vector point of an LD line of R3

(Table 5) with primitive coefficients (1
4 ;

1
4 ;

1
4) is described as

ð0; 0; 3
4Þ with respect to a basis dual to the conventional

hexagonal setting of R3. For space groups with primitive

lattices, the wavevector coefficients referred to a primitive

basis coincide with those referred to the basis dual to the

conventional one of ITA.

The data for the crystallographic classification scheme of

the wavevectors are listed under the heading ‘ITA description’

in the k-vector tables. The columns ‘Wyckoff positions’ show

the data of ‘multiplicity’, ‘Wyckoff letter’ and ‘site symmetry’

of the Wyckoff positions of the symmorphic space group G0 of

ITA which is isomorphic to the reciprocal-space group (G)*.

The multiplicity of a Wyckoff position divided by the number

of lattice points in the conventional unit cell of ITA equals the

number of arms of the star of the k vector of the Wyckoff-

position block. The alphabetical sequence of the Wyckoff

positions determines the sequence of the CDML labels. The

tables start with the Wyckoff letter a for the Wyckoff position

of the highest site symmetry and proceed in alphabetical order

until the general position (GP) is reached. ‘Oriented’ point-

group symbols are used to indicate the site-symmetry groups

which coincide with the little co-groups of the wavevectors

(for ‘oriented’ point-group symbols cf. ITA, x2.2.12). The

parameter description of the Wyckoff position of G0 is shown in

the last column of the wavevector tables. It consists of a

coordinate triplet of a representative point of the Wyckoff

position and algebraic statements for the description of the

parameter ranges. Because of the isomorphism between G0

and (G)* the coordinate triplets of the Wyckoff positions of G0

can be interpreted as k-vector coefficients ðka1; ka2; ka3Þ

determined with respect to the conventional ITA basis of G0.

The relation between the ‘ITA’ coefficients ðka1; ka2; ka3Þ and

the ‘conventional’ coefficients ðk1; k2; k3Þ is shown in Table

3. (For more details on the relationships between the different

sets of k-vector coefficients, the reader is referred to ch. 1.5 of

ITB where the ‘ITA’ coefficients are denoted as adjusted

coefficients.) As an example consider the line DT of P321

(Table 4 and Fig. 2). According to the ITA description, it

corresponds to the Wyckoff position 2g with a site-symmetry

group 3::. Its parameter description 0; 0; z: 0< z< 1
2 indicates

that the independent segment of the line 0; 0; z is limited by

the special k-vector points � ðz ¼ 0Þ and A ðz ¼ 1
2Þ with z

varying between 0 and 1
2. In some cases, the algebraic

expressions are substituted by the designation of the para-

meter region in order to avoid clumsy notation. The parameter

descriptions of the flagpoles and the wings are shown under

the k-vector tables.

Because of the dependence of the shape of the Brillouin

zone on the lattice parameter relations there may be vertices

of the Brillouin zone with a variable coordinate. If such a point

is displayed and designated in the tables and figures by an

upper-case letter, then the label of its variable coefficient used

in the parameter-range descriptions is the same letter but

lower case. Thus, the variable coefficent of the point G0 is g0,

of LD0 is ld0 etc. (cf. Table 5).

As already indicated, the parameter ranges are chosen such

that each orbit of the Wyckoff position of ITA, i.e. also each

k-vector orbit, is listed exactly once. As a result, one usually

gets rather complicated descriptions of the independent

parameter regions included in the general-position block. For

example, the statement found in Table 4
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Table 2
‘Conventional’ k-vector coefficients kj (i.e. with respect to a basis dual to
the conventional basis of ITA) expressed by the ‘primitive’ k-vector
coefficients kpj (i.e. referred to a primitive basis) for the different Bravais
types of lattices in direct space.

Lattice types k1 k2 k3

aP;mP; oP; tP; cP;
hP; rP

kp1 kp2 kp3

mA; oA kp1 kp2 � kp3 kp2 þ kp3

mC; oC kp1 þ kp2 �kp1 þ kp2 kp3

oF; cF �kp1 þ kp2 þ kp3 kp1 � kp2 þ kp3 kp1 þ kp2 � kp3

oI; cI; tI kp2 þ kp3 kp1 þ kp3 kp1 þ kp2

hR (hexagonal) kp1 � kp2 kp2 � kp3 kp1 þ kp2 þ kp3

Table 3
‘Conventional’ k-vector coefficients kj (i.e. with respect to a basis dual to
the conventional basis of ITA) expressed by the ‘ITA’ k-vector
coefficients kaj (i.e. referred to the conventional ITA basis of G0) for
the different Bravais types of lattices in direct space.

Lattice types k1 k2 k3

aP;mP; oP; tP; cP; rP ka1 ka2 ka3

mA; oA ka1 2ka2 2ka3

mC; oC 2ka1 2ka2 ka3

oF; cF; oI; cI 2ka1 2ka2 2ka3

tI ka1 þ ka2 �ka1 þ ka2 2ka3

hP ka1 � ka2 ka2 ka3

hR (hexagonal) 2ka1 � ka2 �ka1 þ 2ka2 3ka3



GP u; v;w 6 l 1 x; y; z : �x< y< x
2 ; 2x� 1< y;� 1

2 < z 	 1
2[

[ x;�x; z : 0< x< 1
3 ; 0< z< 1

2[

[ x; x
2 ; z : 0< x< 2

3 ; 0< z< 1
2[

[ x; 2x� 1; z : 1
3 < x< 2

3 ; 0< z< 1
2

means that the description of the asymmetric unit is split into a

three-dimensional set (body) and three two-dimensional sets

(planes). Apart from the points inside the body, the three-

dimensional set includes the points of one of its boundary

planes, namely the plane at z ¼ 1
2. Together the regions contain

exactly one representative for each k-vector orbit of the

general position (GP) of the reciprocal-space group.

At the bottom of the web page with the k-vector table one

finds an auxiliary tool which allows the complete character-

ization of any wavevector of the reciprocal space (not

restricted to the first Brillouin zone): given the k-vector

coefficients referred either to a primitive (CDML) or to a

conventional basis, the program assigns the k vector to the

corresponding wavevector symmetry type, specifies its CDML

label, and calculates the little co-group and the arms of the

k-vector stars. Consider, for example, a k vector with coeffi-

cients (0:4; 1:3; 0) of the space group P321 (No. 150), cf. Table

4 and Fig. 2. It is a vector outside the Brillouin zone and its

coefficients do not correspond to any of the parameter

descriptions of the k-vector representatives listed in Table 4.

The output of the auxiliary tool indicates that k (0:4; 1:3; 0) is

a point of a special k-vector line of type LD and belongs to the

Wyckoff-position block 3j. Its star consists of three k vectors,

k� ¼ fð0:4; 1:3; 0Þ; ð1:3;�1:7; 0Þ; ð�1:7; 0:4; 0Þg. The little co-

group ..2 is generated by a twofold rotation that can be

identified by direct inspection among the symmetry operations

of ðP312Þ� as 2x; 0; 0 ðx� y; y; zÞ.

3.2. Guide to the figures

As for the tables, the headline blockfor each figure includes

the specification of the space group, its arithmetic crystal class

and all space groups that belong to that arithmetic crystal

class. Different figures for the same arithmetic crystal class are

distinguished by the corresponding geometric conditions for

the lattice. The corresponding conditions for the lattice

parameters of the reciprocal lattice are indicated after the

symbol of the reciprocal-space group.

The Brillouin zones are projected onto the drawing plane by

a clinographic projection (see e.g. Smith, 1982). The coordi-

nate axes are designated by kx; ky and kz; the kz-coordinate

axis points upward in the projection plane. The diagrams of

the Brillouin zones follow those of CDML in order to facilitate

comparison of the data. The origin O with coefficients (0, 0, 0)

always coincides with the centre of the Brillouin zone and is

called � (indicated as GM in the k-vector tables).

In the Brillouin-zone figures the representation domains of

CDML are compared with the asymmetric units of ITA. If

the primitive basis of CDML fg1; g2; g3g and the ITA basis

fkx; ky; kzg do not coincide, then their relations are indicated

below the Brillouin-zone figures. A statement of whether the

representation domain of CDML and the asymmetric unit are

identical or not is given below the k-vector table. The asym-

metric units are often not fully contained in the Brillouin zone

but protrude from it, in particular by flagpoles and wings.

In the figures, a point is marked by its label and by a circle

filled in with white if it is listed in the corresponding k-vector

table but is not a point of special symmetry. The same desig-

nation is used for the auxiliary points that have been added in

order to facilitate comparison between the traditional and the

reciprocal-space-group descriptions of the k-vector types.

Non-coloured parts of the coordinate axes, of the edges of the

Brillouin zone or auxiliary lines are displayed by thin solid

black lines. Such lines are dashed or omitted if they are not

visible, i.e. are hidden by the body of the Brillouin zone or of

the asymmetric unit.

The representatives of the orbits of k-vector symmetry

points or of symmetry lines, as well as the edges of the

representation domains of CDML and of the asymmetric units

are brought out in colour:

(a) Symmetry points. A representative point of each orbit of

symmetry points is designated by a red or cyan filling of the

circle with its label also in red or cyan if it belongs to the

asymmetric unit or to the representation domain of CDML. If

both colours could be used, e.g. if the asymmetric unit coin-

cides with the representation domain, the colour is red. Note

that a point is coloured red or cyan only if it is really a

symmetry point, i.e. its little co-group is a proper supergroup of

the little co-groups of all points in its neighbourhood. Points

listed by CDML are not coloured if they are part of a

symmetry line or symmetry plane only.

(b) Symmetry lines. Coloured lines are drawn as solid if they

are ‘visible’, i.e. if they are not hidden by the Brillouin zone or

by the asymmetric unit. A hidden symmetry line or edge of the

asymmetric unit is not suppressed but is shown as a dashed

line. The colour coding of the different lines applied in the

Brillouin-zone diagrams is displayed in Fig. 1.

The labels of the special lines shown on the Brillouin-zone

figures are always red or cyan irrespective of whether the lines

are edges of the representation domain or not. Common edges

of an asymmetric unit and a representation domain are

coloured pink if they are not symmetry lines simultaneously.
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Figure 1
Colour coding of the different lines applied in the Brillouin-zone
diagrams.



Flagpoles are always coloured red – see e.g. the line P1 or

PA1 in Fig. 3. Symmetry planes are not distinguished in the

figures. However, wings are indicated in the figures and they

are always coloured pink – see e.g. Figs. 5 and 6.

4. Examples

The relation between the traditional and the reciprocal-space-

group descriptions of the wavevector types is illustrated by the

following examples. They are chosen among the new tables

and figures of the Brillouin-zone database developed for space

groups of the hexagonal P lattice, rhombohedral space groups

and monoclinic space groups in unique axis b setting. The

figures and tables included here form part of the output of the

access tool KVEC.

4.1. k-Vector table and Brillouin zone for space group P321
(No. 150)

The new data for space groups of the hexagonal P lattice

are illustrated by the k-vector table shown in Table 4 and

the Brillouin-zone diagram of the space group P321 (No.

150) shown in Fig. 2. The reciprocal lattice of a hexagonal P

lattice is also a hexagonal P lattice and the Brillouin zone

is a hexagonal prism with z extending in the range ð�1=2; 1=2�,

i.e � 1
2 < z 	 1

2. The conventional basis for the reciprocal

lattice has �� = 60
 while the ITA description of hexagonal

space groups is based on 120
 (aH; bH) basis. In the Brillouin-

zone diagrams, the axes kx; kz are taken along aH; cH while

ky points out in the direction of aH þ bH. The table and

diagram of P321 can also be used for the space groups P3121

(No. 152) and P3221 (No. 154) which belong to the arithmetic

crystal class 321P. As the asymmetric unit and the repre-

sentation domain coincide, the basic colour of their edges is

pink. Note that the reciprocal-space group of 321P is ðP312Þ�

(cf. Table 1).

The list of the special k vectors includes special points of

symmetry and special lines of symmetry. The points

A;H;HA;�;K and KA are represented by red circles as they

are special k-vector points of symmetry 32 (cf. Table 4). The

lines DT (indicated as � on Fig. 2), P and PA are brown

because they correspond to each of the three tertiary axes of

the asymmetric unit and at the same time form its edges. The

special k-vector lines T;TA and LE are coloured cyan as they

do not form part of the edges of the representation domain.

Together with the line LD (represented as � in Fig. 2) and the

point M, they belong to the Wyckoff-position block 3j, i.e. all

these different wavevectors belong to the same k-vector type.

Its uni-arm description is achieved by the definition of two

flagpoles, stretching out of the asymmetric unit along the

� line. The flagpole LE1 is equivalent to LE, while the flag-

pole T1 [M0 [ TA1 substitutes T [M [ TA. The uni-arm

description of the k-vector type 3j is shown in the last row of

the Wyckoff-position block. The parameter description of the

flagpoles and their parameter ranges with respect to the basis

of the reciprocal-space group are given below the k-vector

table.

The k-vector lines S;QA and SA are dark blue as they are

selected in CDML to represent the special twofold symmetry

lines along the edges of the representation domain. Together

with the line Q and the point L, they belong to the special

k-vector type of the Wyckoff-position block 3k. As in the case

of the 3j type, a uni-arm description can be achieved by

defining two flagpoles stretching out of the representation

domain along the k-vector line Q.

It has already been pointed out that special k-vector points

and lines are brought out in colours only if they are chosen as

orbit representatives of the corresponding k-vector type. For

example, although SA1 is along a binary axis, it is not coloured

as a special line (the pink colour indicates an asymmetric unit

edge) since it is not chosen as an orbit representative in any of

the two descriptions: SA1 is substituted by SA in the CDML

description or by SA3 in the case of the uni-arm description.

Likewise, the points KA2 and KA0 (of symmetry 32) are not

coloured as special points as they belong to the orbit of the

special k-vector point KA, chosen as an orbit representative

and shown in the diagram by a circle filled in red. [The

fact that the three points belong to the same k-vector

orbit is evident from their coefficients: KA ð23 ;�
1
3 ; 0Þ,

KA2 ð
2
3 ;

2
3 ; 0Þ;KA0 ð�

1
3 ;�

1
3 ; 0Þ.]

The points L and M are examples of k-vector points whose

little co-groups are not proper supergroups of the little co-

groups of all points in their neighbourhood. In fact, although

L and M are explicitly listed by CDML as special k-vector

points, they form part of the lines S and T and in the diagram

they are represented by black circles filled in with white.

4.2. Brillouin-zone diagrams of the space group R3 (No. 146)

The ‘rhombohedral’ space groups, i.e. space groups with a

rhombohedral lattice, belong to the trigonal crystal system of

ITA. Depending on the rhombohedral angle � (or the relation

between the lattice parameters a and c), two topologically

different Brillouin zones are to be distinguished: (i) in the
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Figure 2
Brillouin zone, asymmetric unit and representation domain of CDML of
the arithmetic crystal class 321P: space groups P321 (No. 150), P3121
(No. 152) and P3221 (No. 154); reciprocal-space group ðP312Þ�. The
representation domain of CDML coincides with the asymmetric unit.



acute case, with �< 90
 (or
ffiffiffi
3
p

a>
ffiffiffi
2
p

c), the Brillouin zone

has 14 apices and 12 faces (it consists of the rhombohedral

forms f100g and f110g and can be called a rhombohedrally

truncated distorted cube), and (ii) in the obtuse case with �>
90
 (or

ffiffiffi
3
p

a<
ffiffiffi
2
p

cÞ, the Brillouin zone has 24 apices and

14 faces (it is a kind of a rhombohedrally distorted cube-

octahedron and consists of deformed cubic forms f100g and

f111g).

In the following, the Brillouin-zone diagrams of the space

group R3, the simplest of the rhombohedral space groups, are

considered as an example. The R3 diagrams of the Bilbao

Crystallographic Server are shown in Figs. 3 and 4. While the
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Table 4
k-Vector table for the space groups of the arithmetic crystal class 321P as it is shown on the Bilbao Crystallographic Server.

The Brillouin-zone diagram is shown in Fig. 2.



representation domains of the acute and obtuse unit cells are

of a rather complicated form, the asymmetric units in both

cases have a topologically identical and relatively simple shape:

it is a rhombus with an angle of 120
 in the xy plane (a union

of two equilateral triangles) with z extending from � 1
6 to 1

6.

In the diagrams one can distinguish a single special k-vector

type: it is a symmetry k-vector line along the threefold axis. In

the obtuse case, the correspondence between the CDML

description of the special k-vector line and the uni-arm

description is straightforward as the necessary segment of the

line 0; 0; z lies entirely inside the Brillouin zone (cf. Table 5

and Fig. 4): the uni-arm description of the Wyckoff-position

block 3a unifies the lines � and LE, and the two points � and

T. In the hexagonal basis, it is described by the segment of the
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Table 5
k-Vector tables of the space group R3 (No. 146), acute (

ffiffiffi
3
p

a>
ffiffiffi
2
p

c) and obtuse (
ffiffiffi
3
p

a<
ffiffiffi
2
p

c) cases, as shown on the Bilbao Crystallographic Server.

The Brillouin-zone diagrams are shown in Figs. 3 and 4.



line 0; 0; z with z varying in the range ð� 1
2 ;

1
2�. It is worth

noting that, although listed separately in CDML, the points �
and T obviously belong to the same k-vector type as the lines

� and LE, i.e. the points have the same symmetry as the points

on the line and, as such, they are represented by black circles

filled in with white on the diagrams.

Because of the special shape of the Brillouin zone and the

representation domain for the acute case (
ffiffiffi
3
p

a>
ffiffiffi
2
p

c), the

special k-vector line corresponding to the Wyckoff-position

block 3a splits into several segments: the lines � and LE,

located inside the Brillouin zone, and the lines P and PA

(coloured dark blue) at the border of the Brillouin zone (cf.

Table 5 and Fig. 3). For the description of the end points of the

segments it is necessary to introduce additional parameters as

p0 and ld0 whose values depend on the specific relations

between the lattice parameters. To enable uni-arm description,

symmetry lines equivalent to P and PA, located outside the

Brillouin zone and along (0; 0; z), are to be selected as orbit

representatives. The uni-arm description of the special

k-vector line is formed by the union of the lines � and LE, the

flagpoles P1 ð� PÞ and PA1 ð� PAÞ, and the points � and

T2 ð� TÞ. Its parameter description ð0; 0; zÞ with z varying in

the range ð� 1
2 ;

1
2� coincides with that of the obtuse case.

4.3. Diagrams of monoclinic groups

For monoclinic space groups, because of the variety of

possible axial relations between the lattice parameters, several

topologically different Brillouin zones are necessary for the

classification of the wavevectors. In CDML the Brillouin zones

are replaced by primitive unit cells which are always paralle-

lepipeds independently of the axial ratios. The description of

the k-vector types of the monoclinic space groups applied in

CDML is only with respect to unique axis c setting and no data

are available for monoclinic space groups described with

respect to unique axis b setting. To complete the database,

k-vector tables and figures have been generated for all six

monoclinic arithmetic crystal classes: 121P, 121C, 1m1P,

1m1C, 12=m1P and 12=m1C. The derivation of the new data is

illustrated by the k-vector table and figure of 12=m1C shown

in Table 6 and Fig. 5. For comparison, the corresponding

unique axis c data of the arithmetic crystal class 112=mA are

shown in Table 7 and Fig. 6.

In ITA the monoclinic space group C2=c (No. 15) is

described in six settings: depending on the cell choices, there

are three descriptions for each of the unique axis b and unique

axis c settings. The Brillouin-zone database contains k-vector

tables and figures of two settings of C2=c, namely, the settings

A112=a (unique axis c, cell choice 1) and C12=c1 (unique axis

b, cell choice 1). The space group C2=c belongs to the arith-

metic crystal class 2=mC which also includes the space group

C2=m (No. 12). In the following, we discuss briefly the

k-vector table and figure of A112=a, and then proceed with the

derivation of the data of C12=c1 from those of A112=a.

The reciprocal-space group of A112=a is isomorphic to the

symmorphic space group A112=m, i.e. the list of special

Wyckoff positions of A112=m indicates the special k-vector

types of A112=a. In fact, the Wyckoff-position data, including

multiplicities, Wyckoff letters, site-symmetry groups and

coordinate triplets of Table 7 are taken directly from ITA. For

the determination of the parameter ranges one starts by
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Figure 3
Brillouin zone, asymmetric unit and representation domain of CDML for
the space group R3 (No. 146): acute case (

ffiffiffi
3
p

a>
ffiffiffi
2
p

c); reciprocal-space
group ðR3Þ�. The representation domain of CDML is different from the
asymmetric unit.

Figure 4
Brillouin zone, asymmetric unit and representation domain of CDML for
the space group R3 (No. 146): obtuse case (

ffiffiffi
3
p

a<
ffiffiffi
2
p

c); reciprocal-space
group ðR3Þ�. The representation domain of CDML is different from the
asymmetric unit.



defining the parameter region (or space) of a Wyckoff position

(line, plane or space) which is inside the unit cell. The ratio of

order of the site-symmetry group (representing those opera-

tions which leave the parameter space fixed pointwise) and the

order of the stabilizer (which is the set of all symmetry

operations modulo integer translations which leave the para-

meter space invariant as a whole) gives the independent

fraction of the parameter space (i.e. of the volume of the unit

cell, or of the area of the plane, or of the length of the line).

For example, the parameter space of the line 0; 0; z in the unit

cell is determined by the variation of z in the range

ð� 1
2 < z< 1

2Þ. The order of the site-symmetry group is 2 while

its stabilizer is of order 4 (the group 2=m), so the independent
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Table 6
k-Vector table of the space groups of the arithmetic crystal class 12=m1C (2=mC) as shown on the Bilbao Crystallographic Server.

The unit-cell diagram is shown in Fig. 5.

Figure 5
Unit cell and asymmetric unit of the arithmetic crystal class
12=m1C ð2=mCÞ: space groups C12=m1 (No. 12) and C12=c1 (No. 15);
reciprocal-space group ðC12=m1Þ�.

Figure 6
Unit cell, asymmetric unit and representation domain of CDML of the
arithmetic crystal class 112=mA ð2=mCÞ: space groups A112=m (No. 12)
and A112=a (No. 15); reciprocal-space group ðA112=mÞ�. The representa-
tion domain of CDML is different from the asymmetric unit.



segment is exactly 1
2 of the parameter space in the unit cell,

e.g. ð0< z< 1
2Þ. In a similar way, the independent area of

the plane x; y; 0 is exactly 1
2 of the area of the plane in the unit

cell. For its uni-arm description, it is necessary to introduce

a wing, stretching outside of the asymmetric unit

x; y; 0 : 0< x< 1
2 ;�

1
2 < y< 0 (coloured in pink in Fig. 6).

The labels of the special k-vector points, lines and planes

and their coordinates listed in the first two columns of Table 7

are taken directly from Table 3.9(c) of CDML. The corre-

spondence between the special k vectors listed by CDML and

the Wyckoff positions of ITA follows from the relation

between the primitive basis fg1; g2; g3g used by CDML and the

conventional ITA basis fkx; ky; kzg (cf. Table 3.4 of CDML):

g1 ¼ kx; g2 ¼ ky þ kz; g3 ¼ �ky þ kz (cf. Fig. 6). The wave-

vector coefficients ðk1; k2; k3Þ under the heading ‘Conven-

tional basis’ of Table 7 refer to a basis that is dual to the

conventional basis of ITA. The coefficients ðk1; k2; k3Þ are

derived from the primitive coefficients ðkp1; kp2; kp3Þ of

CDML: k1 ¼ kp1; k2 ¼ kp2 � kp3; k3 ¼ kp2 þ kp3 (cf. Table 2).

The k-vector data of C12=c1 (i.e. of the arithmetic crystal

class 12=m1C) can be derived from those of A112=a (i.e. of

112=mA) utilizing the relationship between the two setting

descriptions of ITA. The transformation matrix P, specifying

the relation between the basis fab; bb; cbg of the setting unique

axis b (cell choice 1) and the basis fac; bc; ccg of the setting

unique axis c (cell choice 1) reads

ðab; bb; cbÞ ¼ ðac; bc; ccÞP ¼ ðac; bc; ccÞ

0 0 1

1 0 0

0 1 0

0
@

1
A

(cf. Table 5.1.3.1 of ITA). The coordinate triplets

xb

yb

zb

0
@

1
A

of the special Wyckoff positions of C12=m1 (listed under ‘ITA

description’ of Table 6) are obtained from the point coordi-

nates

xc

yc

zc

0
@

1
A

of Table 7 by the relation

xb

yb

zb

0
@

1
A ¼ P�1

xc

yc

zc

0
@

1
A ¼

0 1 0

0 0 1

1 0 0

0
@

1
A

xc

yc

zc

0
@

1
A ¼

yc

zc

xc

0
@

1
A:

For example, the representative coordinate triplet of the

special Wyckoff position 4f of A112=m transforms exactly to

the representative coordinate triplet of the special Wyckoff

position 4f of C12=m1:
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Table 7
k-Vector tables of the space groups of the arithmetic crystal class 112/mA (2/mC) as shown on the Bilbao Crystallographic Server.

The unit-cell diagram is shown in Fig. 6.



1
2
1
4
1
4

0
B@

1
CA�!

1
4
1
4
1
2

0
B@

1
CA:

Under a coordinate transformation of the bases in

direct space ðab; bb; cbÞ ¼ ðac; bc; ccÞP, the corresponding

k-vector coefficients transform according to ðkx;bky;bkz;bÞ =

ðkx;cky;ckz;cÞP (cf. ITA, ch. 5.1). The transformation of the set

of special k-vector coefficients of A112=m (primitive or

conventional) by the matrix

P ¼

0 0 1

1 0 0

0 1 0

0
@

1
A

results in the set of special k-vector coefficients for C12=m1

(primitive or conventional). For example, the primitive

k-vector coefficients ðkp1;bkp2;bkp3;bÞ of C12=m1 are obtained

from those of A112=m from the relation

ðkp1;bkp2;bkp3;bÞ ¼ ðkp1;ckp2;ckp3;cÞ

0 0 1

1 0 0

0 1 0

0
B@

1
CA

¼ ðkp2;ckp3;ckp1;cÞ;

kp1;b ¼ kp2;c; kp2;b ¼ kp3;c; kp3;b ¼ kp1;c:

The special k vectors of C12=m1 keep the CDML labels of the

k vectors of A112=m from which they are derived.

5. Conclusions

The wavevector database of the Bilbao Crystallographic

Server contains Brillouin-zone figures and wavevector tables

for all 230 space groups. In this compilation, the representa-

tion domains and the lists of special k vectors in the tables on

space-group representations by Cracknell, Davies, Miller and

Love (CDML) are compared with figures and wavevector data

based on the so-called reciprocal-space-group approach which

is based on the isomorphism between reciprocal-space groups

and the symmorphic space groups. The database is accessed by

the program KVEC. The k-vector data are the same for all

space groups of the same arithmetic crystal class. There are

several sets of figures and tables for the same space group

when its Brillouin-zone shape depends on the lattice para-

meters of the reciprocal lattice. In the figures, the unit cells and

asymmetric units of the symmorphic space groups chosen in

ITA are juxtaposed to the Brillouin zones and representation

domains of CDML. The k-vector data as listed by CDML are

compared with the Wyckoff-position description given in ITA.

The Wyckoff positions of ITA provide a complete list of the

special k vectors of the Brillouin zones: the site-symmetry

groups of ITA coincide with the little co-groups of the wave-

vectors; the multiplicity per primitive unit cell equals the

number of arms of the k-vector stars. All k-vector stars giving

rise to the same type of irreps correspond to the same Wyckoff

position and applying the so-called uni-arm description they

are collected in one entry when flagpoles and wings are

admitted. Its parameter description also contains the inde-

pendent parameter ranges which are essential to ensure that

exactly one k vector per orbit is represented in the asymmetric

unit or in the representation domain. In that sense, the data on

the independent parameter ranges shown in the k-vector

tables of the Brillouin-zone database provide a solution to the

completeness problem of the space-group irreps.
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